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Abstract This study is concerned with developing laminar flow of an incompressible, Newtonian
fluid, having constant viscosity, rotating in circular and rectangular ducts that contain a 1808
bend. The Reynolds number ranges from 100 to 400, the rotation number from 0 to 0.4, and the
Dean number from 66 to 264. Positive and negative rotation modes are considered. The artificial
compressibility method is used for the numerical calculations and new boundary conditions are
developed for these flows. It is shown that rotation causes the secondary flow to occur in ducts of
any geometry, and that the strength of the secondary flow in the bend due to both rotation and
curvature decreases as compared to the no rotation case.

Introduction
Fluid flow in curved ducts undergoing orthogonal rotation has several
applications in practical engineering problems. Orthogonal rotation for this
geometry is where the axis of rotation is parallel to the axis of curvature of the
duct, as shown in Figure 1. Examples where this type of flow occurs are
lubricants in internal combustion engine passages, fluids in cooling systems,
air in turbo-machinery passages, as well as blood flow when the human body is
subjected to rotation.

Laminar flow in conduits has been widely studied in the past. Hagen in 1839
and Poiseuille in 1840 obtained the classical parabolic solution for one-
dimensional laminar flow in stationary, straight circular ducts. This one-
dimensional Hagen-Poiseuille laminar flow becomes a three-dimensional flow if
the circular duct is subjected to orthogonal rotation. Barua (1955) and Benton
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(1956) studied the flow in a straight circular duct rotating at a constant angular
velocity about an axis perpendicular to the main flow direction in the duct
(orthogonal rotation). Their solutions are only valid for small angular velocity
because the authors assumed perturbations on the Hagen-Poiseuille flow.

Speziale (1982, 1986) numerically solved the case of laminar flow in a
straight rectangular duct under orthogonal rotation. The duct was considered
long enough that the end effects could be neglected. The governing equations
in a Cartesian coordinate system were solved using finite differences and the
streamfunction-vorticity method. Because of the coordinate system used, only
rectangular ducts were analyzed.

The first solution of the flow in a stationary curved circular duct was offered
by Dean (1928), who showed that the centrifugal force due to the curvature
would push the peak of the main velocity towards the outer wall of the bend,
thus producing a double-spiral secondary flow. Dean established a non-
dimensional parameter to describe the phenomenon, the Dean number,

K ¼ Re
Lc

Rc

� �1
2

and Re ¼
Lc

�W

v
ð1Þ

Figure 1.
Flow configuration and

coordinate system
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where Re is the Reynolds number, Lc a characteristic length, Rc the curvature
radius, W̄ the average axial velocity, and v the fluid kinematic viscosity.

Flows in straight ducts under orthogonal rotation are characterized by the
presence of secondary flow, consisting of a pair of counter-rotating vortices, as
shown in Figure 2 for a circular duct. As the fluid density is considered
constant, the centrifugal force acts as a conservative force and only the Coriolis
force generates the secondary flow. The rotational effect is taken into account
using a non-dimensional parameter known as the rotation number, Ro, and
defined as the ratio of the Coriolis force to the inertial force, i.e.

Ro ¼
VLc

�W
ð2Þ

where V is the angular rate of rotation.
Many authors, such as Daskopoulos and Lenhoff (1990), Selmi et al. (1994)

and Iacovides et al. (1996) have studied the flow in curved ducts under
orthogonal rotation, where the axis of rotation is parallel to the axis of
curvature of the duct (perpendicular to the main flow direction in the duct). In
these works a fully developed flow along the bend (independent of angular
coordinate) is assumed. Ito and Motal (1974) showed that the centrifugal force
present due to the bend curvature always acts radially outwards along the
bend irrespective of the direction of rotation. The Coriolis force acts
perpendicular to the axis of rotation, but its direction can be radially outwards
or inwards for positive or negative rotation, respectively. Most recently, Hwang

Figure 2.
Typical secondary flow
pattern for rotating
laminar flow
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and Lai (1998a, b) studied the three-dimensional flow problems in rotating
multiple-pass square channels.

In the present work, numerical results are obtained for the developing
laminar flow in ducts having circular or rectangular cross-sections, a 1808
bend, and are rotating either positively or negatively about an axis parallel to
the axis of curvature of the duct (orthogonal rotation). Rectangular ducts with
aspect ratios (height to width) of 1.0 and 2.0 and circular ducts with a diameter
equal to the characteristic length are considered. The Dean numbers ranged
from 65.94 to 263.75, rotation numbers from 0.0 to 0.4 and Reynolds numbers
from 100 to 400.

Formulation of the physical problem
Figure 1 shows the geometry and dimensions of the 1808 bend used in this
study. The characteristic length is the duct height and the rectangular cross-
sections have aspect ratios of 1.0 or 2.0. The inlet and outlet sections were
located at a distance five times the characteristic length from the bend, and the
radius of curvature along the bend is 2.3 times its characteristic length. The
bend rotates at a constant angular rate of rotation V about an axis, which is
parallel to the curvature axis. Because the Coriolis force direction can act
radially outwards or inwards along the bend, it is necessary to define two
different rotational modes called positive or negative rotation. Positive rotation
is when the bend shown in Figure 1 rotates in a clockwise direction and
therefore, the Coriolis force acts radially outwards along the bend. Negative
rotation is when the bend shown in Figure 1 is under counter-clockwise
rotation and the Coriolis force acts radially inwards along the bend. The fluid is
considered incompressible and Newtonian with constant properties, and the
flow is considered steady.

The 1808 bend under rotation represents a non-inertial frame of reference
because its acceleration will cause “fictitious forces” not considered in classical
flow problems. The governing equations used in flow modeling must be
modified to consider these new forces due to rotation, which comprised
centrifugal and Coriolis forces. As previously mentioned, the fluid is assumed
incompressible and therefore, the centrifugal force due to rotation is
conservative. As a result, the static pressure and the potential of the
centrifugal force can be coupled together using a modified pressure, and the
calculated velocity field is independent of the distance from the axis of rotation
to the axis of curvature (Xo, Zo in Figure 1).

The governing equations, with respect to the x, y, and z coordinate system
(Figure 3a) are

Continuity
›u

›x
þ

›v

›y
þ

›w

›z
¼ 0 ð3Þ

Momentum
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x-component

r
›u

›t
þ u

›u

›x
þ v

›u

›y
þ w

›u

›z

� �
¼ 2

›P

›x
þ m

›2u

›x2
þ
›2u

›y2
þ

›2u

›z2

� �
2 2rVw ð4Þ

y-component

r
›v

›t
þ u

›v

›x
þ v

›v

›y
þ w ¼

›v

›z

� �
¼ 2

›P

›y
þ m

›2v

›x2
þ

›2v

›y2
þ

›2v

›z2

� �
ð5Þ

z-component

r
›w

›t
þ u

›w

›x
þ v

›w

›y
þ w

›w

›z

� �
¼ 2

›P

›z
þ m

›2w

›x2
þ
›2w

›y2
þ

›2w

›z2

� �
þ 2rVu

ð6Þ

where, u, v, and w are the velocity components in the x, y, and z directions,
respectively. The quantity P is the modified pressure, which simplifies the
momentum equations in a rotating coordinate system and is defined as:

P ¼ p þ rF where F ¼
V2

2
ðx2 þ z2Þ ð7Þ

Note that the modified pressure includes the static pressure ( p ) and the
potential of the centrifugal term (F). This form of simplification can be made
because the fluid density is constant.

Equations (3)-(6) are given in dimensionless form using a reference length
and reference velocity. The reference velocity used is the average axial velocity,
W̄. The reference length used is the circular diameter and the rectangular
height, Lc, as explained in Figure 1.

The dimensionless quantities obtained are:

x* ¼
x

Lc
y* ¼

y

Lc
z* ¼

z

Lc
u* ¼

u
�W

v* ¼
v
�W

w* ¼
w
�W

P* ¼
P

rW�
2

t* ¼
t �W

Lc
Ro ¼

VLc

�W

Using these quantities, the dimensionless form of equations (3)-(6) are obtained
as:

›u*

›x*
þ

›v*

›y*
þ

›w*

›z*
¼ 0 ð8Þ
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›u*

›t*
þ u*

›u*

›x*
þ v*

›u*

›y*
þ w*

›u*

›z*
¼ 2

›P*

›x*
þ

1

Re

›2u*

›x*2
þ

›2u*

›y*2
þ

›2u*

›z*2

 !
2 2Ro w*

ð9Þ

›v*

›t*
þ u*

›v*

›x*
þ v*

›v*

›y*
þ w*

›v*

›z*
¼ 2

›P*

›y*
þ

1

Re

›2v*

›x*2
þ

›2v*

›y*2
þ

›2v*

›z*2

 !

ð10Þ

›w*

›t*
þ u*

›w*

›x*
þ v*

›w*

›y*
þ w*

›w*

›z*
¼ 2

›P*

›z*
þ

1

Re

›2w*

›x*2
þ

›2w*

›y*2
þ

›2w*

›z*2

 !
þ 2Ro u*

ð11Þ

This set of equations contains two non-dimensional parameters: the Reynolds
number and the rotation number. The Dean number is calculated using
equation (1).

Numerical procedure
Equations (8)-(11) are coupled, non-linear, partial differential equations. Clearly,
an analytical solution of this set of equations is not possible. Even the task of
solving them numerically is enormous, requiring complicated boundary
conditions that must remain valid under a rotating frame of reference. Also,
because the fluid is incompressible, it is necessary to find a method to link
changes in the velocity field to changes in the pressure field.

The domain studied in this work is represented using a boundary-fitted
coordinate system, and the governing equations are solved in a transformed
hexahedral computational domain. Figure 3(a) shows the grid for the 1808 bend
with a circular cross-section in the physical domain, and Figure 3(b) is the
representation of the same geometry in the computational domain. The set of

Figure 3.
(a) 1808 bend with

circular cross-section on
physical domain; (b) 1808
bend with circular cross-
section on computational

domain
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governing equations can be written in non-dimensional vector form for a
generalized coordinate system as

›

›t
ðD̂Þ þ

›

›j
ðÊc 2 ÊvÞ þ

›

›h
ðF̂c 2 F̂vÞ þ

›

›z
ðĜc 2 ĜvÞ ¼ Ŝ ð12Þ

where

D̂ ¼

r*

u*

v*

w*

2
666664

3
777775 ð13Þ

The quantity r* is an artificial density and is related to the modified pressure
by the artificial equation of state

P* ¼
r*

b
ð14Þ

where b is the artificial compressibility factor. The convective vectors are

Êc ¼
1

J

U

u*U þ P*jX

v*U þ P*jY

w*U þ P*jZ

2
666664

3
777775 F̂c ¼

1

J

V

u*V þ P*hX

v*V þ P*hY

w*W þ P*hZ

2
666664

3
777775 Ĝc ¼

1

J

W

u*W þ P*zX

v*W þ P*zY

w*W þ P*zZ

2
666664

3
777775

ð15Þ

and U, V, W are

U ¼ jxU* þ jyV* þ jzW*

V ¼ hxU* þ hyV* þ hzW*

W ¼ zxU* þ zyV* þ zzW*

ð16Þ

The quantity J is the Jacobian of the transformation defined as the determinant
of the Jacobian matrix:

J ¼
ðx* ; y* ; z* Þ

ðj;h; zÞ
ð17Þ

The viscous vectors are defined as
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ÊV ¼
1

J

0

jXtXX þ jYtXY þ jZtXZ

jXtXY þ jYtYY þ jZtYZ

jXtXZ þ jYtYZ þ jZtZZ

2
666666664

3
777777775

F̂V ¼
1

J

0

hXtXX þ hYtXY þ hZtXZ

hXtXY þ hYtYY þ hZtYZ

hXtXZ þ hYtYZ þ hZtZZ

2
666666664

3
777777775

ĜV ¼
1

J

0

zXtXX þ zYtXY þ zZtXZ

zXtXY þ zYtYY þ zZtYZ

zXtXZ þ zYtYZ þ zZtZZ

2
666666664

3
777777775

ð18Þ

and tXX, tYY, tZZ, tXY, tXZ, tYZ are:

tXX ¼
2

Re
½jXu*

j þ hXu*
h þ zXu*

z �

tYY ¼
2

Re
½jY v*

j þ hY v*
h þ zY v*

z �

tZZ ¼
2

Re
½jZw*

j þ hZ w*
h þ zZ w*

z �

tXY ¼
1

Re
½jY u*

j þ hY u*
h þ zY u*

z þ jX v*
j þ hX v*

h þ zXv*
z �

tYZ ¼
1

Re
½jZ v*

j þ hZv*
h þ zZ v*

z þ jY w*
j þ hY w*

h þ zY w*
z �

tXZ ¼
1

Re
½jXw*

j þ hXw*
h þ zXw*

z þ jZ u*
j þ hZu*

h þ zZ u*
z �

ð19Þ
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The new terms due to the Coriolis force are included in the governing equation
as a source term:

Ŝ ¼
1

J

0

22Ro w*

0

2Ro u*

2
666664

3
777775 ð20Þ

The method suggested by Chorin (1967), known as the artificial compressibility
method, is used to link the continuity equation with the momentum equation.
Using this formulation an artificial term, the time derivative of the artificial
density, is added to the continuity equation as shown in equation (12). With the
addition of this term, the resulting set of equations is a mixed set of hyperbolic-
parabolic equations, which can be solved using a standard time-march
approach. This artificial term vanishes for the steady-state solution, allowing
the solution of incompressible, steady flow problems without affecting the
accuracy of the results.

In an incompressible fluid, a disturbance in the pressure field causes
waves, which travel at infinite speed. Waves of finite speed result when the
artificial compressibility method is used. The magnitude of this speed depends
on the pseudo-compressibility constant b. Ideally, the value of the pseudo-
compressibility constant should be chosen as high as the algorithm allows, so
that incompressibility is quickly recovered.

The coupled partial differential equations are represented as a coupled
algebraic system of equations using finite differences. This algebraic system
of equations is solved using the coupled strongly implicit procedure
(CSIP) proposed by Stone (1968) and utilized by Vaidyanathan (1998). The
convective terms are discretized by a third-order upwind scheme and a second-
order central difference scheme is used for the viscous terms. Results
are obtained marching in time until the following convergence criterion is
satisfied: ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXim; jm; km

i; j; k¼1

Xn¼4

n¼1

qmþ1
n 2 qm

n

qmþ1
n; rms




4ðimÞð jmÞðkmÞ

vuuuut
# 5 £ 1026 ð21Þ

where m is the iteration level, n the variable index (u, v, w, P ), qn the
scalar value of the variable (u, v, w, P ), im, jm and km are the number of grid
points in the j, h and z directions, respectively, and qn,rms the root mean square
value of qn.
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Boundary conditions
Non-slip and non-penetration boundary conditions are used at the wall of the
duct. Therefore, the associated boundary conditions are:

u ¼ v ¼ w ¼ 0 at the wall ð22Þ

The boundary condition used for pressure at the wall is the boundary layer
approximation valid in a rotating frame of reference. This boundary condition
requires that the normal gradient of the modified pressure at the wall vanishes.
The boundary layer approximation used in this work is

ð7P* Þ·n̂ ¼ 0 ð23Þ

where P* is the modified pressure and n̂ is a unit vector normal to the surface.
At the inlet (Figure 1), the velocity profile is specified. For the cases

presented in this study, the velocity profile for a fully developed flow in a
straight duct is used. The fully developed straight-duct velocity profile under
rotation is obtained using two different methods: (a) the streamfunction–
vorticity method used by Speziale (1982); and (b) the three-dimensional CSIP
solver developed in this work. It was found that both methods predict the same
velocity profile at the inlet as shown in Section 4. However, the method of
Speziale is preferred because less computational time is needed. This method is
fully discussed in Speziale (1982, 1986). The pressure at the inlet is extrapolated
from internal nodes.

At the outlet, the velocity profile is extrapolated from the internal nodes and
therefore, a pressure boundary condition is needed at the outlet. It was found in
this work that imposing constant pressure at the outlet was not accurate,
particularly at high rotation numbers because the Coriolis force due to rotation
produces a pressure gradient along the outlet surface. This problem is solved
using the boundary condition proposed by Schiesser (1996). The pressure at the
outlet is specified using the convective and Coriolis terms from the transverse
momentum equations. The viscous terms are neglected because at moderate
to high Reynolds numbers the hyperbolic derivatives are dominant. The
y-momentum and z-momentum equations used for the pressure boundary
condition at the outlet are:

u*
›v*

›x*
þ v*

›v*

›y*
þ w*

›v*

›z*
¼ 2

›P*

›y*
ð24Þ

u*
›w*

›x*
þ v*

›w*

›y*
þ w*

›w*

›z*
¼ 2

›P*

›z*
þ 2Ro u* ð25Þ

Taking the derivative of equation (24) with respect to y* and the derivative of
equation (25) with respect to z*, the following set of equations is obtained:
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›2P*

›y*2
¼

›

›y*
ðSyÞ where Sy ¼ 2 u*

›v*

›x*
þ v*

›v*

›y*
þ w*

›v*

›z*

� �
ð26Þ

and

›2P*

›z*2
¼

›

›z*
ðSzÞ where Sz ¼ 2 u*

›w*

›x*
þ v*

›w*

›y*
þ w*

›w*

›z*

� �
þ 2Ro u*

ð27Þ

Adding equations (26) and (27), the following Poisson equation for pressure is
obtained:

›2P*

›y*2
þ

›2P*

›z*2
¼

›

›y*
ðSyÞ þ

›

›z*
ðSzÞ ð28Þ

The source terms, Sy and Sz, are computed from the previous iteration level.
Equation (25) is an elliptic partial differential equation and is solved using
the line Gauss-Seidel iteration method proposed by Hoffman and Chiang
(1995). This boundary condition yielded the pressure at the outlet and was
successfully implemented in the CSIP/artificial compressibility code developed
in this work. Papa (2000) showed that a developing laminar flow, within
straight orthogonal rotating channels, could be considered fully developed at a
distance three times its characteristic length. These results allow us to conclude
that any disturbance effect of the outlet is minimized by placing this section at
a distance five times its characteristic length.

Computations are performed on a 51 £ 21 £ 21 (j by h by z ) grid for the
1808 bend with a circular cross-section or a square cross-section, where the
aspect ratio is 1. Calculations with a rectangular cross-section and an aspect
ratio of 2 are performed on a 51 £ 41 £ 21 (j by h by z ) grid. Results using a
finer mesh, 101 £ 41 £ 41; were obtained to check that the results were grid
independent. The streamwise velocity is used as the parameter to check for
grid independence. Figure 4 is a comparison of the streamwise velocity profile
at three different angular locations along the 1808 bend at the symmetry plane
ðy ¼ 0:0Þ using the square cross-section with a Re ¼ 200 and two different
rotation numbers ðRo ¼ 0:0 and Ro ¼ 0:4Þ; under positive rotation. Equivalent
results were obtained for the streamwise velocity comparison for an aspect
ratio of 2 with the 51 £ 41 £ 21 grid, and also for a circular cross-section duct.
These results show that a grid definition of 51 £ 21 £ 21 for the bend with
either a circular or a square cross-section (aspect ratio of 1) is acceptable, and
that the same is true when a grid of 51 £ 41 £ 21 is used for the bend with a
rectangular cross-section having an aspect ratio of 2.
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Figure 4.
Development of main

flow in a 1808 bend with
square cross-section

ðRe ¼ 200Þ
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Results and discussion
Before discussing the predicted results for the flow in the rotating 1808 bend,
the validity of the numerical method used in this work is confirmed by
comparing the predictions with the experimental results obtained by Akiyama
et al. (1983). Figure 5 shows the axial velocity profile obtained in the present
work and the experimental results obtained by Akiyama et al. for a 1808
bend with a circular cross-section at Re¼ 1,000, Dean Number ðKÞ ¼ 666 and
Ro ¼ 0:0; i.e. no rotation. Very good agreement is evident at the 08 and 1808
planes and good agreement is shown at the 908 plane.

The fully developed straight-duct velocity profile imposed at the inlet is
obtained, as previously discussed, using the streamfunction–vorticity method
proposed by Speziale (1982). The basis for this is shown in Figure 6(a) and (b),
which contain the fully developed axial velocity contours for a straight duct
with a square cross-section for Re ¼ 100 and Ro ¼ 0:1: As can be seen from the
streamfunction–vorticity method, Figure 6(a), and the CSIP code developed in
this work, Figure 6(b), produce virtually the same contours. The secondary
flow produced by rotation is compared using both the methods in Figure 6(c)
and (d). At higher Reynolds and rotation numbers, Speziale (1982) found that
these two counter-rotating vortices break into four vortices. This behavior is
also obtained in this work, as shown in Figure 7(a) and (b). This four-vortex
regime was not found in the circular duct under rotation. The main advantage
of the Speziale (1982) method is that the results are obtained using a two-
dimensional analysis and assuming that the flow is fully developed in the axial
direction. Therefore, a relatively coarse mesh containing only 21 £ 21 nodes
can be used for the calculations. This compares to a mesh containing 51 £
21 £ 21 nodes used by the CSIP code.

The evolution of the streamwise velocity in a 1808 bend with a circular cross-
section for Re ¼ 200 under positive or negative rotation is shown in Figure 8(a)
and (b), respectively. Under positive rotation the force due to the curvature of
the bend and the Coriolis force are acting outwards. Therefore, the streamwise
velocity along the inlet, bend and outlet sections is higher closer to the outer
wall. Under negative rotation, the streamwise velocity along the inlet and outlet
sections is higher closer to the inner wall because the Coriolis force is acting
inwards. However, along the bend the centrifugal force due to the curvature is
acting outwards and overcomes the Coriolis force, pushing the streamwise flow
towards the outer wall.

Tables I, II and III show the maximum magnitude of the secondary flow
velocity for the 1808 bend for a range of Dean and rotation numbers using
circular, square and rectangular cross-sections, respectively. The maximum
absolute value for the secondary flow along the bend at the same Dean number,
K, is found to be for Ro ¼ 0:0; i.e. the non-rotating cases. This behavior is
obtained for all cross-sections used in this study. These results are interesting
because they show that the magnitude of the secondary flow along a bend is

HFF
12,7

792



decreased under either positive or negative rotation. Positive rotation does not
increase the secondary flow along the bend because the streamwise flow before
entering the bend is closer to the outer wall, as shown in Figure 8(a). In
addition, secondary flow along the bend for higher Dean numbers is decreased

Figure 5.
Development of main

flow in a 1808 bend with
circular cross-section for
Re ¼ 1,000, K ¼ 666 and

Ro ¼ 0:0

Calculation of
developing

laminar flow

793



substantially under negative rotation because the Coriolis force acts in a
direction opposite to the centrifugal force produced by the curvature of the
bend. The secondary flow pattern along the bend with a circular cross-section
can be described mainly by the formation of two counter-rotating vortices.
Figure 9(a) and (b) shows the secondary flow pattern for the circular 1808 bend
at the same angular location (1808 plane), Ro ¼ 0:0 (no-rotation) and Ro ¼ 0:2
(positive rotation), respectively. The figure shows that the rotation decreases
the strength or magnitude of this pair of counter-rotating vortices (shorter
vector length) but does not change their position.

For rectangular bends, the two counter-rotating vortices break into four
vortices if the Dean number is higher than a critical value. Yang and Ye (1996),
Ghia and Sokhey (1977), and Daskopoulos and Lenhoff (1989) have previously
reported this complex four-vortex formation before for non-rotating bends. For
the present study, Figure 10(a) and (b) shows the two counter-rotating flow
patterns at the exit of the bend for the non-rotating rectangular duct with two
different aspect ratios for a Dean number of 132, and Figure 10(c) and (d) shows
the four vortices formation for a Dean number of 264. This pattern of secondary

Figure 6.
(a) Inlet axial velocity
contour using the
vorticity–
streamfunction method;
(b) inlet axial velocity
contour using the 3-D
CSIP code; (c) inlet
secondary flow using the
vorticity–
streamfunction method;
(d) inlet secondary flow
using the 3-D CSIP code
ðRe ¼ 100; Ro ¼ 0:1Þ
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flow was not observed for the circular bend in the range of Dean numbers used
in this work.

Conclusion
The developing laminar flow within a rotating 1808 bend with three different
cross-sections is studied via the finite difference method using a boundary
fitted coordinate system and the artificial compressibility method. The effect of
rotation on the flow is considered in the complete Navier–Stokes equations by
the addition of Coriolis and centrifugal forces. Two new boundary conditions
are successfully used in this work: determination of the fully developed straight
duct inlet flow velocity profile under rotation and the correct specification of
the outlet boundary condition for pressure.

Figure 7.
(a) Inlet secondary flow

pattern in a rotating
rectangular duct with an
aspect ratio of 2; (b) inlet

secondary flow pattern
in a rotating rectangular
duct with an aspect ratio

of 1 ðRe ¼ 400 and
Ro ¼ 0:2Þ
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Figure 8.
(a) Steam-wise velocity
contour under positive
rotation ðRe ¼ 200;
Ro ¼ 0:4Þ; (b) stream-
wise velocity contour
under negative rotation
ðRe ¼ 200; Ro ¼ 0:4Þ

Positive rotation No rotation Negative rotation
K Ro ¼ 0.2 Ro ¼ 0.4 Ro ¼ 0.0 Ro ¼ 0.2 Ro ¼ 0.4

65.94 0.3224 0.3095 0.4113 0.3362 0.3164
131.88 0.3293 0.3354 0.4705 0.2928 0.3091
263.75 0.3242 0.3231 0.5038 0.3054 0.3155

Table I.
Maximum
secondary velocity
for the circular 1808
bend
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The present analysis reveals that the effects of rotation on the flow behavior in
straight or curved ducts is quite complex. Regardless of duct geometry,
rotation causes secondary flows to occur which consist of a pair of counter-
rotating vortices, similar to the secondary flow pattern in a curved bend
without rotation. For high Reynolds and rotation numbers, these patterns in
rectangular ducts can break into two or more pair of vortices.

For the flow in a rotating duct having a 1808 bend, regardless of cross-
section, positive rotation results in the maximum streamwise velocity being
located closer to the outer wall in all sections of the duct since both the
centrifugal and Coriolis forces act outward. For negative rotation, the Coriolis
force acts inward and the location of the maximum streamwise velocity is

Positive rotation No rotation Negative rotation
K Ro ¼ 0.1 Ro ¼ 0.2 Ro ¼ 0.0 Ro ¼ 0.1 Ro ¼ 0.2

65.94 0.4550 0.4417 0.4729 0.3827 0.2986
131.88 0.4440 0.4279 0.6446 0.4086 0.2974
263.75 0.4321 0.5538 0.7816 0.3845 0.2571

Table III.
Maximum

secondary velocity
for the rectangular
1808 bend with an

aspect ratio of 2

Positive rotation No rotation Negative rotation
K Ro ¼ 0.2 Ro ¼ 0.4 Ro ¼ 0.0 Ro ¼ 0.2 Ro ¼ 0.4

65.94 0.3670 0.3521 0.4853 0.3798 0.3480
131.88 0.3819 0.3749 0.5567 0.2820 0.3286
263.75 0.4454 0.3402 0.6987 0.3022 0.3224

Table II.
Maximum

secondary velocity
for the square 1808

bend

Figure 9.
(a) Secondary flow

pattern at the bend outlet
for the circular geometry

ðRe ¼ 200; Ro ¼ 0:0Þ;
(b) secondary flow

pattern at the bend outlet
for the circular geometry
ðRe ¼ 200 and Ro ¼ 0:2Þ
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along the inner wall in the inlet and outlet sections, but is closer to the outer
wall in the bend. Interestingly, the strength of the secondary flow in the 1808
bend due to both curvature and rotation, either positive or negative, decreases
as compared to the vortex strength for no rotation.
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